60 research outputs found

    Review of Current Student-Monitoring Techniques used in eLearning-Focused recommender Systems and Learning analytics. The Experience API & LIME model Case Study

    Get PDF
    Recommender systems require input information in order to properly operate and deliver content or behaviour suggestions to end users. eLearning scenarios are no exception. Users are current students and recommendations can be built upon paths (both formal and informal), relationships, behaviours, friends, followers, actions, grades, tutor interaction, etc. A recommender system must somehow retrieve, categorize and work with all these details. There are several ways to do so: from raw and inelegant database access to more curated web APIs or even via HTML scrapping. New server-centric user-action logging and monitoring standard technologies have been presented in past years by several groups, organizations and standard bodies. The Experience API (xAPI), detailed in this article, is one of these. In the first part of this paper we analyse current learner-monitoring techniques as an initialization phase for eLearning recommender systems. We next review standardization efforts in this area; finally, we focus on xAPI and the potential interaction with the LIME model, which will be also summarized below

    Design of a Remote Signal Processing Student Lab

    Full text link
    [EN] We describe our experience of introducing digital signal processing (DSP) concepts via a software-defined radio project using a very inexpensive TV USB capture dongle. Through a series of weekly lab exercises, the students learned and applied DSP concepts to design a completely digital FM receiver. The proposed lab experience introduced concepts, such as sampling, IQ signal representation, sample rate conversion, filter design, filter delays, and more, all with an attractive learn-by-doing approach. The first offering of this course initially took place in Fall 2014 and has been successfully offered and repeated with growing success ever since. Our experience can serve as a proof of concept of the possibility of carrying out, in a massive open online course-like fashion, certain engineering labs that require inexpensive and readily available hardware components.This work was supported by the Universidad Internacional de la Rioja through the Research Institute for Innovation and Technology in Education.Albiol Colomer, A.; Corbi, A.; Burgos, D. (2017). Design of a Remote Signal Processing Student Lab. IEEE Access. 5:16068-16076. doi:10.1109/ACCESS.2017.2736165S1606816076

    Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction

    Full text link
    (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.We present a methodology to recover the geometrical calibration of conventional X-ray settings with the help of an ordinary video camera and visible fiducials that are present in the scene. After calibration, equivalent points of interest can be easily identifiable with the help of the epipolar geometry. The same procedure also allows the measurement of real anatomic lengths and angles and obtains accurate 3D locations from image points. Our approach completely eliminates the need for X-ray-opaque reference marks (and necessary supporting frames) which can sometimes be invasive for the patient, occlude the radiographic picture, and end up projected outside the imaging sensor area in oblique protocols. Two possible frameworks are envisioned: a spatially shifting X-ray anode around the patient/object and a moving patient that moves/rotates while the imaging system remains fixed. As a proof of concept, experiences with a device under test (DUT), an anthropomorphic phantom and a real brachytherapy session have been carried out. The results show that it is possible to identify common points with a proper level of accuracy and retrieve three-dimensional locations, lengths and shapes with a millimetric level of precision. The presented approach is simple and compatible with both current and legacy widespread diagnostic X-ray imaging deployments and it can represent a good and inexpensive alternative to other radiological modalities like CT.This work was carried out with the support of Information Storage S.L., University of Valencia (grant #CPI-15-170), CSD2007-00042 Consolider Ingenio CPAN (grant #CPAN13-TR01) as well as with the support of the Spanish Ministry of Industry, Energy and Tourism (Grant TSI-100101-2013-019).Albiol Colomer, F.; Corbi, A.; Albiol Colomer, A. (2016). Geometrical Calibration of X-Ray Imaging With RGB Cameras for 3D Reconstruction. IEEE Transactions on Medical Imaging. 35(8):1952-1961. https://doi.org/10.1109/TMI.2016.2540929S1952196135

    3D measurements in conventional X-ray imaging with RGB-D sensors

    Full text link
    [EN] A method for deriving 3D internal information in conventional X-ray settings is presented. It is based on the combination of a pair of radiographs from a patient and it avoids the use of X-ray-opaque fiducials and external reference structures. To achieve this goal, we augment an ordinary X-ray device with a consumer RGB-D camera. The patient' s rotation around the craniocaudal axis is tracked relative to this camera thanks to the depth information provided and the application of a modern surface-mapping algorithm. The measured spatial information is then translated to the reference frame of the X-ray imaging system. By using the intrinsic parameters of the diagnostic equipment, epipolar geometry, and X-ray images of the patient at different angles, 3D internal positions can be obtained. Both the RGB-D and Xray instruments are first geometrically calibrated to find their joint spatial transformation. The proposed method is applied to three rotating phantoms. The first two consist of an anthropomorphic head and a torso, which are filled with spherical lead bearings at precise locations. The third one is made of simple foam and has metal needles of several known lengths embedded in it. The results show that it is possible to resolve anatomical positions and lengths with a millimetric level of precision. With the proposed approach, internal 3D reconstructed coordinates and distances can be provided to the physician. It also contributes to reducing the invasiveness of ordinary X-ray environments and can replace other types of clinical explorations that are mainly aimed at measuring or geometrically relating elements that are present inside the patient's body.(C) 2017 IPEM. Published by Elsevier Ltd. All rights reserved.The authors would like to thank the Radiation Oncology Department of the Physics Section at La Fe Hospital for the anthropomorphic phantom used in this work and Jose Manuel Monserrate (Instituto de Física Corpuscular) for his contribution in the development of the calibration frame shown in Fig. 3. This research has the support of Information Storage S.L., University of Valencia (grant CPI-15-170), CSD-2007-00042 Con solider Ingenio CPAN (grant CPAN-13TR01), IFIC (Severo Ochoa Centre of Excellence SEV20140398) as well as the support of the Spanish Ministry of Industry, Energy, and Tourism (grant TSI1001012013019).Albiol Colomer, F.; Corbi, A.; Albiol Colomer, A. (2017). 3D measurements in conventional X-ray imaging with RGB-D sensors. Medical Engineering & Physics. 42:73-79. https://doi.org/10.1016/j.medengphy.2017.01.024S73794

    Evaluation of modern camera calibration techniques for conventional diagnostic X-ray imaging settings

    Full text link
    [EN] We explore three different alternatives for obtaining intrinsic and extrinsic parameters in conventional diagnostic X-ray frameworks: the direct linear transform (DLT), the Zhang method, and the Tsai approach. We analyze and describe the computational, operational, and mathematical background differences for these algorithms when they are applied to ordinary radiograph acquisition. For our study, we developed an initial 3D calibration frame with tin cross-shaped fiducials at specific locations. The three studied methods enable the derivation of projection matrices from 3D to 2D point correlations. We propose a set of metrics to compare the efficiency of each technique. One of these metrics consists of the calculation of the detector pixel density, which can be also included as part of the quality control sequence in general X-ray settings. The results show a clear superiority of the DLT approach, both in accuracy and operational suitability. We paid special attention to the Zhang calibration method. Although this technique has been extensively implemented in the field of computer vision, it has rarely been tested in depth in common radiograph production scenarios. Zhang¿s approach can operate on much simpler and more affordable 2D calibration frames, which were also tested in our research. We experimentally confirm that even three or four plane-image correspondences achieve accurate focal lengths.This work was carried out with the support of Information Storage S. L., University of Valencia (Grant #CPI-15170), CSD2007-00042 Consolider Ingenio CPAN (Grant #CPAN13TR01), Spanish Ministry of Industry, Energy and Tourism (Grant #TSI-100101-2013-019), IFIC (Severo Ochoa Centre of Excellence #SEV-2014-0398), and Dr. Bellot's medical clinic.Albiol Colomer, F.; Corbi, A.; Albiol Colomer, A. (2017). Evaluation of modern camera calibration techniques for conventional diagnostic X-ray imaging settings. Radiological Physics and Technology. 10(1):68-81. https://doi.org/10.1007/s12194-016-0369-yS6881101Selby BP, Sakas G, Groch W-D, Stilla U. Patient positioning with X-ray detector self-calibration for image guided therapy. Aust Phys Eng Sci Med. 2011;34:391–400.Markelj P, Likar B. Registration of 3D and 2D medical images. PhD Thesis, University of Ljubljana; 2010.Miller T, Quintana E. Stereo X-ray system calibration for three-dimensional measurements. Springer, 2014. pp. 201–207.Rougé A, Picard C, Ponchut C, Trousset Y. Geometrical calibration of X-ray imaging chains for three-dimensional reconstruction. Comput Med Imaging Graph. 1993; 295–300.Trucco E, Verri A. Introductory techniques for 3-D computer vision. Prentice Hall Englewood Cliffs, 1998.Moura DC, Barbosa JG, Reis AM, Tavares JMRS. A flexible approach for the calibration of biplanar radiography of the spine on conventional radiological systems. Comput Model Eng Sci. 2010; 115–137.Schumann S, Thelen B, Ballestra S, Nolte L-P, Buchler P, Zheng G. X-ray image calibration and its application to clinical orthopedics. Med Eng Phys. 2014;36:968–74.Selby B, Sakas G, Walter S, Stilla U. Geometry calibration for X-ray equipment in radiation treatment devices. 2007. pp. 968–974.de Moura DC, Barbosa JMG, da Silva Tavares JMR, Reis A. Calibration of bi-planar radiography with minimal phantoms. In: Symposium on Informatics Engineering. 2008. pp. 1–10.Medioni G, Kang SB. Emerging topics in computer vision. Prentice Hall. 2004.Bushong S. Radiologic science for technologists: physics, biology, and protection. Elsevier. 2012.Rowlands JA. The physics of computed radiography. Phys Med Biol. 2002;47:123–66.Dobbins JT, Ergun DL, Rutz L, Hinshaw DA, Blume H, Clark DC. DQE(f) of four generations of computed radiography acquisition devices. Med Phys. 1995;22:1581–93.Hartley R. Self-calibration from multiple views with a rotating camera. In: European Conference on Computer Vision. 1994. pp. 471–478.Tsai R. A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J Robot Autom. 1985;3(4):323–44.Hartley R, Zisserman A. Multiple view geometry in computer vision. Cambridge University Press. 2004.Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell. 2000;22:1330–4.Remondino F, Fraser C. Digital camera calibration methods: considerations and comparisons. Symposium Image Eng Vis Metrol. 2006;36:266–72.Zollner H, Sablatnig R. Comparison of methods for geometric camera calibration using planar calibration targets. In: Digital Imaging in Media and Education. 2004. pp. 237–244

    Environment recognition applied to particle detectors

    Get PDF
    Resumen en español Introducción Los detectores de partículas son dispositivos que registran la radiación ionizante, bien de sistemas activos (rayos X, aceleradores, etc.) o bien de isótopos radiactivos. Para poder realizar medidas de precisión con estos instrumentos, es necesario modelar geométricamente el entorno, contorno o escena bajo estudio. Estas condiciones geométricas se pueden determinar de forma más o menos precisa en algunos experimentos de física de partículas/nuclear, y en algunos sistemas de imagen, como las tomografías. Sin embargo, este escenario no es necesariamente el habitual. El propósito principal de este trabajo de tesis es desarrollar técnicas e instrumentos que aporten la mencionada información del entorno a cualquier sistema de detección de radiación y de manera general. Como iremos viendo, estas mejoras tienen lugar mediante la adición de sensores externos (cámaras de video y cámaras de rango, principalmente) capaces de aportar dichos datos sobre el contexto espacial. Por escena o contorno se entiende tanto los límites del emplazamiento físico donde se realizan las medidas (habitación, habitáculo, recinto, alrededores, etc.), como el propio elemento bajo examen (paciente, objeto contaminado, fuente radioactiva, etc.), incluyendo su posición, giro y volumen relativo al sistema de imagen o a un punto fijo. Tal es el caso de los dispositivos de rayos X de propósito general o los sistemas detectores portátiles usados, por ejemplo, para la medición de radiación ambiental. Como se demuestra a lo largo de este trabajo de tesis, la mencionada geometría de la escena puede llegar a complementar o aumentar (concepto tomado prestado del mundo de la visión por ordenador o computer vision) de manera muy significativa la información propia recabada por los sistemas de adquisición utilizados. De manera similar, cuando un dispositivo A aumenta un dispositivo B, implica que A provee a B con información espacial relativa a marco de trabajo, de manera que puede derivarse, por ejemplo, información 3D por parte de B, registrar imágenes A+B, etc. Para alcanzar este objetivo, y como parte de esta investigación, se han explorado técnicas y métodos de reconocimiento del entorno, aplicados a las siguientes áreas: • aumento de dispositivos de rayos X usados en diagnóstico primario, • reconstrucción tridimensional de la anatomía de la persona examinada partiendo de radiografías convencionales que luego pueden ser estereográficamente relacionadas, • obtención de nuevas funciones de transferencia que permitan la generación de imágenes densitométricas a partir de las imágenes de absorción y el volumen del/de la paciente, y • asignación de coordenadas 3D a fuentes de radiación y a la dosis recibida. Se ha hecho especial énfasis en los dispositivos de rayos X por su indudable presencia en muchos ámbitos, desde los puramente clínicos hasta los relacionados con la inspección preventiva/forense de objetos. En el contexto de este trabajo, estos sistemas de imagen son aumentados mediante la interacción con dispositivos modernos de posicionamiento, tales como cámaras de video, profundidad, etc. La ventaja de esta arquitectura de imagen dual es la posibilidad de determinar geométricamente la escena con precisión y trasladar y superponer esta información al resultado de origen clínico (o al fruto de una inspección relacionada con la gestión de residuos radioactivos, como en el caso de las gamma-cámaras, estudiadas en [chap:gamma]). Además, como parte de los resultados obtenidos en esta tesis, se ha desarrollado una métrica especial (basada en análisis y teoría de la imagen) para cuantificar de manera objetiva la calidad de imágenes radiográficas. Esta técnica es utilizada para estimar la información de las imágenes densitométricas obtenidas mediante los métodos estudiados en este trabajo. Los rayos X convencionales y sus limitaciones La modalidad radiológica de rayos X convencional es sin duda la más presente y usada en la práctica clínica y ciencias de la salud. Su implantación en todo tipo de centros de salud es muy destacable dada su relativa simplicidad técnica, rapidez y efectividad para diagnosticar muchos tipos de dolencias. La llegada de la radiografía digital no ha hecho otra cosa sino profundizar en esta realidad. Un dispositivo de rayos X consta de un tubo generador de este tipo de radiación instalado dentro de un blindaje, un generador de alta tensión y un chasis o cassette que contiene en su interior la película radiográfica o detector digital que integra finalmente la emisión Roentgen que no ha sido absorbida por el/la paciente o el objeto analizado. A diferencia de otras modalidades como la tomografía axial computerizada (TAC), en la modalidad de rayos X ordinarios la geometría de la escena clínica es descrita de manera muy somera. Con enorme frecuencia, el único registro de la misma son sencillas indicaciones relativas a la posición (y sobre todo, orientación) del/de la paciente con respecto a la cubierta protectora del detector de pared vertical y/o mesa horizontal. Es lo que se conoce en literatura como protocolo o simplemente, posicionamiento del paciente. Estas indicaciones son las que luego se traducen en los conocidos protocolos de examen tales como radiografía postero-anterior, antero-posterior, decúbito, medio-lateral, etc. Esta alta variabilidad geométrica proviene del hecho de que en los dispositivos de rayos X para diagnóstico primario existe un desacoplo estructural entre el detector y la fuente de fotones X (el ánodo del tubo). Dicho de otra manera: ambos pueden desplazarse libremente y con plena independencia el uno del otro. Esto se traduce a su vez en una alta fragilidad de los parámetros intrínsecos (a diferencia de una cámara fotográfica al uso, donde estos valores permanecen fijos desde el momento de su fabricación). Tanto las mesas de examen como los estativos verticales pueden ser fijos, flotantes o semi-flotantes e incluso a veces es posible modificar su ángulo con respecto al suelo o pared para realizar exámenes especiales, como los digestivos. En cualquier sistema de imagen, los parámetros intrínsecos engloban tanto el punto focal como posibles distorsiones y asimetrías que pueden ser medidas y conocidas. Un ejemplo que suele resultar llamativo de esta libertad de movimiento en los sistemas de imagen por rayos X es el hecho de que el punto focal (distancia desde el ánodo al detector y su posición horizontal y vertical en el plano representado por este) puede llegar a estar situado completamente fuera de la superficie de la imagen. Esto acontece, por ejemplo, en algunos protocolos que exigen proyecciones oblicuas o en ángulos muy picados (como las que se muestran en la [fig:xraypositions] y la [fig:oblique]). Nuevamente, esta situación contrasta con la fotografía convencional, donde el punto principal se corresponde normalmente con el pixel central, por ejemplo, en el 640, 540 en el caso de una cámara de video de resolución HD (1920, 1080). Los proyectores de luz (usados comúnmente en presentaciones, arte, etc.) también emplean un punto focal muy desplazado con respecto al centro de la imagen, sin embargo esta sólo se forma con nitidez a una distancia específica y fija (es decir, los parámetros intrínsecos del sistema óptico son nuevamente fijos). Si bien es cierto que la tecnología y estándares radiológicos están preparados para el registro de ciertas distancias tales como la brecha paciente-detector (IOD), emisor-detector (SID), etc., estas casi nunca son estimadas, ni medidas y mucho menos inventariadas manual o electrónicamente. Sin embargo, es bien conocido tanto teórica como experimentalmente, así como por la práctica diaria, que estas magnitudes pueden llegar a tener una repercusión no despreciable tanto en la generación de la propia imagen radiográfica y su calidad, así como en la gestión de la dosis recibida por parte del/de la paciente. Rayos-X aumentados mediante dispositivos de captación de contorno En este trabajo proponemos una serie de herramientas, metodologías y procedimientos para la determinación del ámbito geométrico en escenarios de diagnóstico basados en sistemas convencionales de rayos X. Estas técnicas se apoyan principalmente en la anexión de un dispositivo de captación de contorno o escena que permanece rígidamente acoplado al sistema de imagen de rayos X. Los dispositivos de captación de contorno que han sido explorados en este trabajo son cámaras de video y cámaras de profundidad, aunque existen muchas otras alternativas tales como cámaras basadas en tiempo de vuelo (time-of-flight), LIDARes (light detection and ranging), escáneres 3D láser, sistemas de visión estereoscópica con cámaras RGB calibradas, etc. Una cámara calibrada (sea del tipo que sea: RGB, profundidad, rayos-X) es aquella de la que se conocen sus parámetros intrínsecos y posición respecto a un punto de referencia externo llamado usualmente mundo. Mediante estas cámaras adyacentes y anexionadas de manera rígida es posible la delimitación geométrica de la escena de rayos X, incluidas las distancias anteriormente mencionadas, además de la posición precisa del/de la paciente durante el examen y su volumen. Además, en combinación con una segunda (o más) radiografía(s), es posible aplicar técnicas de estereoscopía y reconstrucción 3D y obtener información tridimensional de su anatomía interna, además de otros valiosos datos válidos para complementar el diagnóstico. En la última década ha acontecido una revolución tecnológica en relación a los dispositivos de captación de contorno, dando lugar a nuevas disciplinas tales como la detección remota, la realidad virtual o la realidad aumentada. Estos nuevos instrumentos conllevan ventajas a las que ya nos hemos ido acostumbrando y se han convertido incluso en cotidianas, tales como la estimación remota de distancias y posiciones, el cálculo de coordenadas, el modelado de superficies, el seguimiento de personas y objetos, la detección barreras y obstáculos, la cartografía y posicionamiento geográfico, entre muchas otras. Los ámbitos de aplicación de los saberes relacionados con la visión por ordenador están ahora al alcance de muchas disciplinas que hasta hace poco se auto-excluían de tales dominios tecnológicos. Entre estas ciencias podemos encontrar a la medicina, la física y otras ciencias básicas. En lo que concierte a los rayos X, cierto tipo de información geométrica y proyectiva (a excepción del volumen del objeto o persona radiografiada) estaba ya disponible gracias a la intercesión de incómodos y costosos marcos de referencia que contienen marcadores fiduciarios opacos a la radiación Roentgen. Esta metodología heredada (así como sus sucesoras basadas en detectores de contorno que se proponen en este trabajo) radica en el hecho de que un dispositivo de rayos X puede asemejarse a una cámara pinhole o cámara estenopeica. Una cámara estenopeica es una cámara fotográfica sin lente y que cuenta con un pequeño orificio o pinhole por donde entra la luz reflejada por los objetos fotografiados, además un material detector. En el caso de un dispositivo de rayos X, el pinhole es en realidad el emisor de luz y coincide estructuralmente con el ánodo del tubo de rayos X, que juega también el papel del anteriormente citado punto focal. El detector en los dispositivos de rayos X estenopeicos es la placa radiográfica o el imaging plate (en el caso digital). La geometría proyectiva afirma que dados conjuntos de puntos con coordenadas espaciales (3D) y sus correspondientes proyecciones en una imagen, es posible hallar la ecuación de calibración de cámara que conecta cualquier otro punto tridimensional en la escena con su localización x,\,y en la imagen. Es lo que se conoce también con el nombre de calibración geométrica de cámara. El problema con la solución basada en marcos de referencia y fiduciales opacas nombrada anteriormente es que pueden dificultar la movilidad del/de la paciente y/o del sistema, pero sobretodo pueden alterar de manera significativa la imagen e influir en el diagnóstico alcanzable a partir de la misma. En el [chap:xraycalibration] se estudian y comparan los distintos algoritmos de calibración de cámara pero aplicados al ámbito de los rayos X. Las técnicas propuestas en este trabajo evitan las mencionadas incomodidades para el/la paciente y no interfieren en absoluto en la generación de la placa radiográfica ni en la imagen de absorción final, además de otras ventajas, tales como la posibilidad de guardar registro visual de la escena, adquirir el contorno del/de la paciente o de aplicar protocolos de examen que requieran una gran oblicuidad por parte del sistema de adquisición. Para combinar geométricamente ambos tipos de dispositivos (sensor de contorno y rayos X) es necesario encontrar con antelación la transformación rígida que los conecta, también conocida como ecuación de la co-cámara. Una transformación rígida es una transformación lineal que preserva tamaño y forma, conservando la alineación, el orden y la pertenencia (es decir, las rectas se transforman en rectas y ángulos en ángulos). La búsqueda de esta relación geométrica se detalla en la [sec:calibration-phase] y la [sec:calibration] para el caso de cámaras de visible y de profundidad, respectivamente. En esta fase (y sólo en esta) nos apoyamos en un marco de calibración que incorpora fiduciales detectables por ambos sistemas de imagen ([fig:calibrationframe]). Una vez hallada esta matriz de transformación, se dice que ambas cámaras están registradas. Tanto en el caso de que la cámara de contorno sea una cámara de video o de profundidad, los marcadores que aparecen en la proyección resultante son fácilmente identificables mediante herramientas de computer vision resumidas en la [sec:tracking]. En el caso de las proyecciones de marcadores opacos a los rayos X, estas son aisladas normalmente de manera manual, aunque es posible aplicar algoritmos de identificación de formas y segmentación sobre la radiografía de calibración. En este trabajo se ha optado por lo primero, aprovechando las mismas herramientas software de visualización y diagnóstico del médico-radiólogo. El proceso de hallazgo de la ecuación co-cámara se relata en la [sec:problem]. Reconstrucción 3D en rayos X Una vez hallada esta relación de registro entre dispositivos, ya no es necesario el marco de calibración, el cual desaparece de la escena sin perjuicio ni influencia alguna en la(s) radiografía(s) del/de la paciente tal y como se ha anticipado en el párrafo anterior. A partir de este momento, es el detector de contorno el responsable de inferir la geometría de la escena, liberando completamente al sistema de rayos X de esta tarea. Entre los elementos propios de la geometría de la escena que son ahora cómodamente medibles se encuentran, por descontado, las longitudes listadas anteriormente (IOD, SID, etc.). Sin embargo, es posible además inferir otras entidades importantes, tales como el volumen del/de la paciente, sus desplazamientos y los movimientos propios del sistema radiológico entre radiografías consecutivas. Concretamente, gracias a esta última ventaja (determinación de transformaciones rígidas entre dos desplazamientos) es posible reconstruir tridimensionalmente puntos y distancias internos al/a la paciente mediante técnicas de visión estereoscópica. Para ello sólo son necesarias dos radiografías obtenidas en dos posiciones separadas, ya sea del propio/de la propia paciente o del sistema radiográfico. Esta versatilidad relacionada con los escenarios de aplicación es tratada en la [sec:scenarios]. Este seguimiento o tracking de la escena es el que se detalla en el [chap:xray+rgb] y el [chap:kinfu] para el caso de que el sensor de contorno sea una cámara RGB y para el caso de una cámara de profundidad, respectivamente. Las cámaras de profundidad consisten en sistemas integrados por una luz láser que es proyectada, formando un patrón conocido, sobre la escena. El reflejo de este patrón es vuelto a ser captado por un sensor CMOS adjunto. A partir de la captura de la deformación del mencionado patrón, es posible determinar información 3D del entorno. La información 3D obtenida por las cámaras de profundidad es transmitida a otros sistemas informáticos mediante las conocidas nubes de puntos o point clouds. Una nube de puntos es un conjunto de vértices en un sistema de coordenadas tridimensional. Estos vértices son representaciones de la superficie externa de un objeto (el/la paciente en este caso). Originalmente, las nubes de puntos se utilizaban en la elaboración de modelos tridimensionales en diseño por ordenador (CAD) en la fabricación de piezas, la inspección de calidad en metrología, y muchos otros ámbitos como animación, y texturización. Desde tiempos recientes han encontrado también un nicho en medicina, como se describe en la [sec:introp2v]. En el [chap:clinica] se muestran algunos ejemplos de aplicación de la reconstrucción 3D anatómica en escenarios clínicos reales, tanto con pacientes como con fantomas antropomórficos. En estos ejemplos puede verse claramente cómo es posible reproducir fielmente la longitud de una astilla en el hueso húmero o las distancias entre marcadores fiduciarios emplazados en distintas posiciones dentro de varios de estos fantomas. También se muestra cómo es factible localizar puntos en dos radiografías distintas mediante el trazado de epipolares acotadas entre ambas. Los conceptos de línea epipolar y línea epipolar acotada se estudian en la [sec:epipolars-howto]. Imágenes densitométricas En el caso de usar cámaras de profundidad, además de permitir estas el seguimiento e identificación del movimiento en la escena radiológica sin necesidad de ningún tipo de marcador fiducial, también es factible reconstruir volúmenes dentro de la misma. En concreto, es posible dirimir el volumen del/de la paciente si este/esta gira frente al mencionado sensor y se aplican las técnicas y métodos descritos en la [sec:moredsm]. Esta digitalización del volumen hace uso a su vez del algoritmo KinectFusion (descrito en la [sec:kinectfusion]) el cual opera de manera continua sobre las nubes de puntos obtenidas previamente o incluso en tiempo real mediante la ejecución de cálculos en paralelo en la unidad de procesamiento gráfico (GPU). La única complejidad en la aplicación de algoritmo de KinectFusion es la necesidad de eliminar la parte de la nube de puntos referente al fondo de la escena (paredes, decoración, el propio detector, etc.). En la [fig:background-extraction] se resumen algunos métodos apropiados para ello. Una vez reconstruido el volumen del/de la paciente, este es trasladado al punto de vista del sistema de rayos X. Este hecho permite a su vez la generación de mapas de longitud recorrida, es decir, el conjunto formado por todas las distancias recorridas por cada rayo entre el punto en el que penetran en el/la paciente cuando vienen desde el ánodo y el punto por el que salen del cuerpo hasta alcanzar finalmente un pixel x,\,y en el detector. La generación de estos mapas se trata en la [sec:lbuffer]. Con estos mapas de longitud atravesada ya es posible traducir las imágenes de absorción (las típicas obtenidas en la generación de radiografías) por imágenes de densidad o densitométricas junto con la definición de una nueva función de transferencia. La solución más común a este problema era hasta ahora la absorciometría dual de rayos X, que consiste en comparar dos imágenes de rayos X tomadas con distinto voltaje. El coste de estos equipos, sin embargo, se incrementa debido a que se requieren dos fuentes de rayos X y/o dos detectores. Otra técnica empleada es el uso de fuentes de rayos X que emitan con al menos dos energías distintas. Estas técnicas reciben el nombre del imagen de absorciometría de rayos X dual (dual-energy X-ray absorptiometry) o DXA. Un examen DXA es una prueba usualmente indicada para determinar la densidad mineral ósea y diagnosticar, principalmente, desórdenes relacionados con osteoporosis. La técnica de DXA implica el uso de una modalidad radiológica y equipos específicos. Además de la utilidad inherente a estas imágenes de densidad, en este trabajo también hemos demostrado que estas imágenes contienen objetivamente una mayor calidad y grado de información en comparación con las radiografías de absorción. Las imágenes densitométricas cuentan con un rango dinámico más comprimido, lo que se traduce en un realce significativo de los tejidos blandos y en una presencia más balanceada de los tejidos óseo y muscular. Trabajo en clínica y medida de la calidad de la imagen radiográfica Respecto a la cuantificación de calidad antes mencionada, el presente trabajo de investigación ha contribuido con una novedosa métrica de cuantificación de la calidad de las imágenes radiológicas basada en los conceptos de información mutua, entropía, entropía condicional y el filtrado Gabor de imágenes. Un filtro de Gabor consiste en una función gaussiana modulada por una curva sinusoidal a la que se le asigna una determinada frecuencia y dirección, obteniendo una reducción del ruido a la vez que se preserva una dirección de la imagen original. Las funciones de Gabor son importantes en el análisis de texturas, especialmente en la segmentación, ya que diferentes texturas tienden a concentrar su presencia en rangos específicos de frecuencias. Normalmente los filtros de Gabor no se aplican de manera individual a una imagen, sino que se utilizan en grupos de filtros, llamados bancos, en los que se permiten diferentes frecuencias y orientaciones. Concretamente, el método propuesto para la asignación de calidad en radiografías (descrito en el [chap:imagequality]) computa la inform

    The Game Theory in Quantum Computers: A Review

    Get PDF
    Game theory has been studied extensively in recent centuries as a set of formal mathematical strategies for optimal decision making. This discipline improved its efficiency with the arrival, in the 20th century, of digital computer science. However, the computational limitations related to exponential time type problems in digital processors, triggered the search for more efficient alternatives. One of these choices is quantum computing. Certainly, quantum processors seem to be able to solve some of these complex problems, at least in theory. For this reason, in recent times, many research works have emerged related to the field of quantum game theory. In this paper we review the main studies about the subject, including operational requirements and implementation details. In addition, we describe various quantum games, their design strategy, and the used supporting tools. We also present the still open debate linked to the interpretation of the transformations of classical algorithms in fundamental game theory to their quantum version, with special attention to the Nash equilibrium

    Automatic determination of the Atterberg limits with machine learning

    Get PDF
    In this study, we determine the liquid limit (Wt), plasticity index (PI), and plastic limit (Wp) of several natural fine-grained soil samples with the help of machine-learning and statistical methods. This enables us to locate each soil type analysed in the Casagrande plasticity chart with a single measure in pressure-membrane extractors. These machine-learning models showed adjustments in the determination of the liquid limit for design purposes when compared with standardised methods. Similar adjustments were achieved in the determination of the plasticity index, whereas the plastic limit determinations were applicable for control works. Because the best techniques were based in Multiple Linear Regression and Support Vector Machines Regression, they provide explainable plasticity models. In this sense, (Equation presented), and (Equation presented). So that, we propose an alternative, automatic, multi-sample, and static method to address current issues on Atterberg limits determination with standardised tests.En este estudio, determinamos el límite líquido (), el índice de plasticidad (PI) y el límite plástico () de suelos naturales finos con ayuda de machine-learning y métodos estadísticos. Ello permite localizarlos en la Carta de Plasticidad de Casagrande con una sola medida en extractores de presión-membrana. Los modelos de machine-learning mostraron ajustes en la determinación de apropiados para propósitos de diseño, comparados con métodos estandarizados. Ajustes similares se alcanzaron en la determinación de PI, mientras que las determinaciones de permiten ajustes apropiados para trabajos de control. Debido a que las técnicas más apropiadas se basaron en Regresión Lineal Múltiple y Máquinas de Soporte de Vectores, aportaron modelos de plasticidad explicables. En este sentido, =(9.94±4.2)+(2.25±0.3)∙4.2,=(−20.47±5.6)+(1.48±0.3)∙4.2+(0.21±0.1)∙y=(23.32±3.5)+(0.60±0.2)∙4.2−(0.13±0.04)∙. Por consiguiente, proponemos un método alternativo, automático, estático y multimuestra para enfrentar problemas frecuentes en la determinación de los Límites de Atterberg con ensayos normalizados

    Data Science Techniques for COVID-19 in Intensive Care Units

    Get PDF
    Data scientists aim to provide techniques and tools to the clinicians to manage the new coronavirus disease. Nowadays, new emerging tools based on Artificial Intelligence (AI), Image Processing (IP) and Machine Learning (ML) are contributing to the improvement of healthcare and treatments of different diseases. This paper reviews the most recent research efforts and approaches related to these new data driven techniques and tools in combination with the exploitation of the already available COVID-19 datasets. The tools can assist clinicians and nurses in efficient decision making with complex and heavily heterogeneous data, even in hectic and overburdened Intensive Care Units (ICU) scenarios. The datasets and techniques underlying these tools can help finding a more correct diagnosis. The paper also describes how these innovative AI+IP+ML-based methods (e.g., conventional X-ray imaging, clinical laboratory data, respiratory monitoring and automatic adjustments, etc.) can assist in the process of easing both the care of infected patients in ICUs and Emergency Rooms and the discovery of new treatments (drugs)
    corecore